
Coding Assignment: Build a Task Management API

Objective:
Design and implement a simple RESTful API for a task management system. The goal is to
evaluate your problem-solving skills, code quality, and understanding of software development
best practices.

Assignment Overview:
You are tasked with building a backend service for managing tasks. The service should support
the following functionalities:

1. Create a Task: Add a new task with details such as title, description, due date, and
status (e.g., Pending, In Progress, Completed).

2. Retrieve Tasks: Fetch a list of all tasks or filter tasks based on their status.
3. Update a Task: Modify task details, including changing its status.
4. Delete a Task: Remove a task from the system.

Requirements:

● Use a programming language of your choice (e.g., Python, Java, JavaScript/Node.js).
● Use a framework like Flask, Django, Spring Boot, or Express.js to set up the API.
● Data storage can be in-memory (using a dictionary/array) or with a database (e.g.,

SQLite, MongoDB).

API Specifications:

Method Endpoint Description Parameters/Body

POST /tasks Create a new task JSON: { "title": "Task1",
"description": "Details",
"due_date": "YYYY-MM-DD",
"status": "Pending" }



GET /tasks Retrieve all tasks
or filter by status

Query params: ?status=Pending

PUT /tasks/{
id}

Update a task's
details

JSON: { "title": "Updated Title",
"status": "Completed" }

DELETE /tasks/{
id}

Delete a task by its
ID

None

Expectations:

● Code should be clean, well-commented, and structured.
● Use proper HTTP status codes and error handling.
● Include basic validation for inputs (e.g., title is required, status must be valid).
● Implement pagination for fetching tasks (optional but encouraged).
● Include a README file with instructions on how to set up and run the project.

Submission Guidelines:

● Upload your code to a GitHub repository or submit it as a zip file.
● Ensure your README includes setup instructions and any assumptions made.

Evaluation Criteria:

● Functionality: Does the API perform the required operations?
● Code Quality: Is the code readable, maintainable, and modular?
● Error Handling: Are errors handled gracefully and appropriately?
● Bonus: Use of advanced features (e.g., authentication, testing, or deployment scripts).


