Coding Assignment: Build a Task Management API

Objective:

Design and implement a simple RESTful API for a task management system. The goal is to
evaluate your problem-solving skills, code quality, and understanding of software development
best practices.

Assignment Overview:
You are tasked with building a backend service for managing tasks. The service should support
the following functionalities:

1. Create a Task: Add a new task with details such as title, description, due date, and
status (e.g., Pending, In Progress, Completed).

2. Retrieve Tasks: Fetch a list of all tasks or filter tasks based on their status.

Update a Task: Modify task details, including changing its status.

4. Delete a Task: Remove a task from the system.

w

Requirements:

Use a programming language of your choice (e.g., Python, Java, JavaScript/Node.js).
Use a framework like Flask, Django, Spring Boot, or Express.js to set up the API.
Data storage can be in-memory (using a dictionary/array) or with a database (e.g.,
SQLite, MongoDB).

API Specifications:

Method Endpoint Description Parameters/Body

POST /tasks Create anew task JSON: { "title": "Task1",
"description”: "Details",
"due_date": "YYYY-MM-DD",
"status": "Pending" }



GET /tasks Retrieve all tasks ~ Query params: ?status=Pending
or filter by status

PUT /tasks/{ Update a task's JSON: { "title": "Updated Title",
id} details "status": "Completed" }

DELETE /tasks/{ Delete atask byits None
id} ID

Expectations:

Code should be clean, well-commented, and structured.

Use proper HTTP status codes and error handling.

Include basic validation for inputs (e.g., title is required, status must be valid).
Implement pagination for fetching tasks (optional but encouraged).

Include a README file with instructions on how to set up and run the project.

Submission Guidelines:

e Upload your code to a GitHub repository or submit it as a zip file.
e Ensure your README includes setup instructions and any assumptions made.

Evaluation Criteria:

Functionality: Does the API perform the required operations?

Code Quality: Is the code readable, maintainable, and modular?

Error Handling: Are errors handled gracefully and appropriately?

Bonus: Use of advanced features (e.g., authentication, testing, or deployment scripts).



